If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19y^2+8y-2=0
a = 19; b = 8; c = -2;
Δ = b2-4ac
Δ = 82-4·19·(-2)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-6\sqrt{6}}{2*19}=\frac{-8-6\sqrt{6}}{38} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+6\sqrt{6}}{2*19}=\frac{-8+6\sqrt{6}}{38} $
| 16/25x+18=x | | 2x+15=60−3x= | | 14-2x=-3x+4 | | 3⋅(2x−1)=2x+13= | | 13.5-x=0 | | x-111=10(2x+3)-27 | | 3(2)+7y=21 | | 10x+4+8=1x | | 4x-8=20-12 | | 5x-5=13x=61 | | 2(2x+1)+2(x)=104 | | 2.5x+14=5x+2 | | 3x-30/4x-45=9/11 | | 28=-35x+28 | | (x-3/2)x(x+1/2)=0 | | 100-2x=4 | | 4²x+⁶=16 | | -4x+9=2x | | 2x+7Y=44 | | 3-(7+x)=(-3x) | | -6x²+39+21=0 | | x2+7=x+12 | | 2/3x-1/3x=28 | | 18x12=Hx4 | | 2(x–4)+7x-1x=6 | | 18x12=Lx4 | | x=62(x–4)+7x-1 | | -18=-15x-7 | | 5a+1=-8 | | X+x+1x+2=78 | | -2x2-5x+18=0 | | x/10-x/5=40 |